本页总览Bell 态阐述 即 12(∣00⟩+∣11⟩),12(∣00⟩−∣11⟩),12(∣01⟩+∣10⟩),12(∣01⟩−∣10⟩)\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \quad \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)21(∣00⟩+∣11⟩),21(∣00⟩−∣11⟩),21(∣01⟩+∣10⟩),21(∣01⟩−∣10⟩) 它们共同构成了一套两量子位空间的基。它们之间可以通过 Pauli 算符互相联系: 12(∣00⟩−∣11⟩)=(σz⊗I)12(∣00⟩+∣11⟩)12(∣01⟩+∣10⟩)=(σx⊗I)12(∣00⟩+∣11⟩)12(∣01⟩−∣10⟩)=i(σy⊗I)12(∣00⟩+∣11⟩)\begin{array}{l}\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left(\sigma_{z} \otimes I\right) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left(\sigma_{x} \otimes I\right) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\ \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=i\left(\sigma_{y} \otimes I\right) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\end{array}21(∣00⟩−∣11⟩)=(σz⊗I)21(∣00⟩+∣11⟩)21(∣01⟩+∣10⟩)=(σx⊗I)21(∣00⟩+∣11⟩)21(∣01⟩−∣10⟩)=i(σy⊗I)21(∣00⟩+∣11⟩) 实例 性质 相关内容 参考文献